If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-53n+164=0
a = 3; b = -53; c = +164;
Δ = b2-4ac
Δ = -532-4·3·164
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-29}{2*3}=\frac{24}{6} =4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+29}{2*3}=\frac{82}{6} =13+2/3 $
| 6(x)=6+100 | | -3(w+4)=4w–5 | | 6+8/x2=5x | | 5x-(4x+2)=2(9-2x) | | 7−x/2=10 | | 5x=5(x-8) | | 26+4v=28 | | (22x+7)=(23x+3) | | -18-3a=15 | | 180=(6x-8)+46 | | 6=14+p | | 2(4x+9)=2 | | 3(x-1)+4=2x-11 | | 5(x-2)=5x-15 | | m−3=−3m−43 | | 4x-13x+9=7(x+2)-9 | | (x-2)/(2x)+1=(x+1)/(x) | | 11d−5d=18 | | 8y-8y-1=6-16-4-10 | | 2/5(-x+55)=40 | | 4/3r=10/3 | | 2x^2=330^2 | | 9-8x-2x=11 | | 7x-11=8x-20 | | x+5=2x+1=x+12 | | 3/5a+2=5.6 | | -11-8x=13 | | 4(x–3)=2x+18 | | 2r+3=20 | | 25b^2-20b-1=0 | | -8+3x=24+9x | | 15n−6n=9 |